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The phenomena of momentum and heat transfer associated with an impulsively started 
spherical particle in a quiescent argon thermal plasma environment is considered. The 
changing plasma thermodynamics and transport property effects are studied using a 
Chebyshev-Legendre spectral method. Steady-state solutions for the case of constant 
sphere surface temperature are obtained and compared with previously published 
results. Transient solutions with particle internal heat conduction included are also 
presented. Results indicate that the magnitude of the drag force increases as the plasma 
free-stream temperature increases, while the Nusselt number decreases with increasing 
free-stream temperature. Effects due to different initial particle temperatures on the 
transient Nusselt number and drag coefficient are demonstrated. 

1. Introduction 
Studies of thermal plasma flow over a solid sphere have been pursued during the past 

few decades owing to its wide range of applications, such as those in chemical 
processing of fine powders or liquid droplets. Specific applications would include the 
decomposition and synthesis of materials, plasma spraying, plasma waste destruction, 
plasma spheroidizing, plasma fuming, etc. In these applications, fine powders or liquid 
droplets are injected into the high-temperature plasma causing the particles to reach a 
desired physical/chemical state. 

Thermal plasmas provide extremely high heating and quenching rates for injected 
particulate matter due to their high temperatures, usually on the order of 10000 K. 
Under these extremely high temperatures, the injected particle experiences unusually 
steep temperature and velocity gradients near its surface. The transport correlations 
based on ordinary gas flow over a sphere fail to provide accurate predictions of the 
drag force and heat flux to the particle. Previous studies on this problem have been 
focused on obtaining steady-state momentum and heat transfer correlations. Pfender 
(1989) provides an extensive review on this subject. He concludes that the most 
important factors which make the plasma-particle momentum and heat transfer differ 
from those of ordinary gas flow over a sphere are the plasma thermodynamics and 
transport property changes due to the steep temperature gradient near the particle 
surface. 

The momentum transfer from a thermal plasma to a solid particle has been analysed 
for the typical case of creeping flow due to the small size (usually in the range of 
5-100 pm in diameter) of the particles used in thermal plasma processing (see Lewis & 
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Gauvin 1973). Early studies on the drag force exerted on a particle under thermal 
plasma conditions have concentrated on the extension of the well-known drag 
coefficient correlation at low Reynolds number (Re < 100, see White 1974), 

1 + 0.2, c --+- 
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12 3 

by suggesting a correction factor that accounts for the effects of the changing 
properties. Various forms of the modifying factor have been proposed and can be 
found elsewhere (see Lewis & Gauvin 1973; Pfender 1989). Owing to the short 
residence time of the particle inside the hot plasma region during thermal plasma 
particle processing (usually on the order of milliseconds), it becomes questionable 
whether the steady-state drag correlation can be used for predicting the plasma-particle 
interactions. It is not clear that the relaxation time for a particle injected into a thermal 
plasma is much less than a millisecond. Under certain circumstances where the particle 
motion is accelerated, significant relaxation times are required for the particle to adjust 
to the flow field. Thus the drag coefficient calculated within this flow field would give 
a result which would be the sum of transient and steady-state responses (Lewis & 
Gauvin 1973). 

The effects of changing plasma thermodynamics and transport properties on the 
heat transfer rates are well summarized by Chen (1988). Early efforts on modifying the 
well-known Ranz-Marshall formula to fit plasma-particle heat transfer are con- 
centrated on a correction factor which is a function of density, viscosity and thermal 
capacities. However, the plasma properties are dependent on the type of working gas 
as well as the temperatures and the pressures. Thus, the predicted heat flux based on 
the multiplying factor methods from air plasma is higher than that from argon plasma. 
The calculated Nusselt numbers based on the correcting factors recommended by 
various researchers deviate from each other significantly. It is believed that the 
deviations are caused by the different plasma properties and different plasma flow 
conditions simulated. Even though there are many suggested steady-state Nusselt 
numbers, again it is unclear whether a particle injected into a thermal plasma truly 
experiences steady-state heat transfer. Bourdin, Fauchais & Boulos (1983) used a 
simple heat conduction model to calculate the particle temperature history and 
concluded that the injected particles usually experience the melting point temperature 
within less than a millisecond. Particle sizes in the range of 20-100 pm have been 
simulated under various plasma free-stream conditions in their calculation. Based on 
these results, they concluded that the relaxation time of the thermal boundary layer 
around the particle is negligible compared to the transient heating time. 

In the presentation which follows, the case of constant sphere surface temperature 
is treated first, followed by the case of time-varying sphere temperature. From these 
solutions, results are deduced for both the drag coefficient and the Nusselt number 
during the transient period. 

2. Mathematical formulation 
Argon is selected as the working gas for the simulation because of its relatively well- 

known thermodynamic and transport properties. Although this study is restricted to 
argon plasma, the mathematical formulation used in this study is applicable to any 
type of working gas for the thermal plasma. The argon plasma flow is assumed to be 
characterized as a thermal plasma and, due to its high temperature, the local 
thermodynamic equilibrium hypothesis is made for the entire flow region. However, 
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the local thermodynamic equilibrium assumption may not be valid near a cold surface, 
especially near the sphere surface where the surface temperature is lower than the 
melting temperature of the material. To further simplify the mathematical formulation, 
the plasma is assumed to behave as a single continuous fluid with only one 
representative temperature for the flow. An optically thin plasma is also assumed so 
that radiative energy emitted by the plasma is not absorbed by itself. Finally gravity 
and viscous dissipation effects on the plasma flow are neglected. 

Based on the above assumptions all the governing equations, to be given in Einstein 
notation, are given herein. The global mass conservation equation can be written as 

where an asterisk represents dimensional quantities and p* = z i p :  is the total mass 
density of the plasma as a single fluid and p: is the partial mass density (mass per unit 
volume) of species i. This study restricts the simulating plasma temperature range 
below 15000 K so that no more than one ionized species exists. Thus the index i 
represents electron, single charged ion, and atom. Without an externally applied 
electromagnetic field, the electrons and heavy species can be assumed to have the same 
velocity, thus the velocity u: stands for the representative species’ velocity considered 
in this study. 

The conservation of momentum is governed by the Navier-Stokes equation written 
as 

where indices k and i have the value of 1 or 2 for the two-dimensional formulation 
considered in this study. p* is the molecular viscosity and A* is the secondary viscosity 
coefficient. The pressure p* is subject to Dalton’s law of partial pressures, i.e. 
p* = C i n i k ,  T* where the summation is for electrons, ions, and atoms, and k ,  is the 
Boltzmann constant. Note that a single temperature is used to represent the 
thermodynamic state of the plasma for every species in the system based on the local 
thermodynamic equilibrium assumption stated earlier. 

The effective thermal conductivity K * ,  which accounts for the energy transfers due 
to ionization, recombination, thermal diffusion and equilibrium radiation, is used to 
describe the heat conduction. By using the effective thermal conductivity concept, the 
energy conservation equation can be written as 

where C: is the total thermal capacity which includes the stagnation enthalpy as well 
as the translational energy. The radiative energy transfer is treated as a volumetric heat 
sink term since the optical depth of the radiation is assumed to be small compared to 
the characteristic length of the plasma. Note that Dp*/dt* and viscous dissipation 
terms are neglected because of the relatively low velocities usually encountered in 
thermal plasma spray and processing. 

Equations (2)-(4) can now be non-dimensionalized by using the following 
dimensionless variables defined as : 
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A* * * u: t* u .  = -2- U* P A L ,  p=!!-, A = -  
A:' 

t=-- 
R ' U:, P a  Pa3 

where subscript co represents the free-stream condition and TT is the initial particle 
temperature. Using these dimensionless variables, (2)-(4) can be recast into the non- 

(6) dimensional form aP a -++@u,) = 0, 
at  ax, 

The above dimensionless form of the governing equations is used to calculate the flow 
and temperature field around the sphere. 

3. Thermodynamic and transport properties 
In order to solve the governing equations outlined in the previous section, it is 

necessary to use the plasma thermodynamic and transport properties. For argon 
plasma at atmospheric pressure, the properties are relatively well known over a wide 
range of temperatures (see Hsu 1982 and Lewis 1972). 

For viscosity at T* < 13 000 K, the curve-fitted form of Hsu's (1982) data is used, 
which can be expressed as 

p* = 4.414 x lop5+ 1.0789 x 10p8T* + 5.4642 x 10-12T*2 

-4.1681 x 10-16T*3 kg m-'s-'. 
For the secondary viscosity coefficient, the Stokesian relation, i.e. 

is used. Since the local thermodynamic equilibrium assumption used in this study 
implies a Boltzmann distribution of the thermal energies among the individual species, 
the Stokes' hypothesis is valid. For the density, heat capacity, thermal conductivity, 
and volumetric radiation loss term, the expressions used by Miller & Ayen (1969) are 
adopted in this study. They can be written 

Density 

p* = 1.783[273/T*-2.06 x 10-'T*+6.72 x 10-"T*'-5.21 x 10-15T*3] kg m-3; 
Heat capacity 

p*+$A* = 0 

T* < 16000 K:  

T* < 6000 K: C;  = 518.8 J (kg K)-'; 
6000 < T* < 10000 K :  C; = 518.8+995.8(T* x J ( k g K ) - l ;  
10000 < T* < 13500 K: C;  = 518.8+995.8(T* x lo-') J (kg K)-'; 

500 < T* < 6000 K:  
Thermal conductivity 

K* = -0.024(T* x 10-4)2+0.262(T* x lO-')f0.0165 W (m K)-'; 
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6000 < T* < 12000 K:  
K* = 0.248(T* x 10-4)6+0.372(T* x 10-4)3+0.074 W (m K)-I; 
Radiation loss 

T* > 9500 K:  (3: = 5600(T*-9500)+ 181(T*-9500)2W mp3 

4. Calculation method 
Figure 1 illustrates the physical configuration and geometry under consideration in 

a two-dimensional spherical coordinates system ( r ,  0) with the origin taken to be at the 
centre of the sphere. As depicted, a rigid particle, assumed spherical in shape, of radius 
R and at temperature T: is exposed to an unbounded compressible fluid at 
temperature TZ. At the time of exposure ( t  = 0), the motion of the sphere is started in 
an impulsive fashion such that the flow is instantaneously accelerated from rest to U ;  
heading from right to left. 

The spectral method adopted in this study uses Chebyshev and Legendre 
polynomials as basis functions for series expansions in the radial and angular 
directions, respectively. The radial coordinate is made finite by projecting the outer 
region of the solid sphere, initially infinite, into a spherical shell. Further, the normal 
distance between the two concentric spheres is rescaled using a new variable 
7 E [ - 1,1]. This coordinate transformation is obtained by the use of an exponential 
mapping, which results in a dense distribution of collocation points near the sphere 
surface where the velocity gradients are expected to be large. The coordinate 
transformation can be written as 

= exp [(I -7) 7,/21, (9) 

where yrn is a parameter large enough such that the flow at any point with radius 
greater than exp(qm) would behave like the free stream. The angular coordinate is 
mapped into a new variable x = cos 0, so that we can expand the dependent variable 
as series of Legendre and associated Legendre polynomials, i.e. 

n=l  

NL NL 

12-1 n=o 
P = C An(t, 7) pn(X), Z = C Zn(t, 7) Pn(x>, 

where Pn(x) is the Legendre polynomial of order n,  Pi (x )  is the associated Legendre 
polynomial of the first kind and N ,  is the number of Legendre polynomials. 

The fractional time-stepping method originally used for incompressible flow 
calculation (Orszag & Kells 1980) is extended to calculate the compressible plasma 
flow. The first step of the time-stepping method treats the advection term in (7) by a 
second-order Adams-Bashforth method : 

where the superscript n represents the time level. This step is exactly the same as the 
one used for incompressible flow calculation (Orszag 8i Kells 1980). The second step 
is to impose the continuity equation by using a pseudo-velocity defined as 
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FIGURE 1. Schematic of the coordinate system. 

and upon substituting this expression into (6) we then obtain 

It should be noted that (13) contains the density variation terms which vanish in the 
incompressible flow formulation. Next, we express the density variation in terms of the 
dependent variables pressure and temperature by using the isentropic relations, i.e. 

where M ,  is the Mach number based on free-stream conditions. Similar expression can 
also be written for ap/ax,. In order for the pressure-based calculation procedure to 
cover all the flow velocity ranges, (14) is substituted into (13). The resulting expression 
is 

where the term ap/aZ can be calculated with a known temperature field using the 
property information mentioned in 53. In order to maintain the compressible feature 
of the computer code, all the terms are retained in this study. However, in case of the 
argon plasma-particle interactions, the typical free-stream Mach number normally 
encountered is less than 0.1, thus it seems that the term involving the Mach number 
does not play an important role in the cases simulated throughout this study. After 
solving (15), the pseudo-velocity is updated by using equation (12). Finally, the third 
step involves the viscous terms and is advanced by the backward Euler difference, 
where actual velocity is calculated as 
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The temperature equation is solved implicitly using the backward Euler difference as 

Since the dependence of the plasma thermodynamics and transport properties on the 
temperature is strong, (1 5)-( 17) are solved iteratively. 

Equations (16) and (17) involve the spatial derivative of viscosity and thermal 
conductivity, which can be written as 

where only the temperature dependence of the viscosity is taken into account. The 
variations of viscosity and thermal conductivities with temperature are evaluated at 
constant pressure. 

It is well known that for Stokes flow the boundary layer is theoretically infinite in 
extent. Thus different values of 7, result in different converged solutions. Our previous 
study (Paik, Nguyen & Chung 1992) for ordinary gas glow over a solid sphere indicated 
that choice of 7, = 3 does not change the converged solution appreciably, thus the 
value of 7, is fixed at 3 throughout the present study. The collocation method used in 
this study evaluates all the spatial derivatives in physical space. The detailed 
representation of the derivatives in spectral form can be found in Nguyen, Paik & 
Chung (1 99 1). 

At this point, it is necessary to discuss the convergence of the numerical scheme 
described in this section. In Practice, Orszag's splitting method has been proved to 
converge to reasonably accurate results for the simulation of incompressible Newtonian 
fluid motion even though it employs a mathematically improper pressure boundary 
condition at the solid surface (Karniadakis, Israeli & Orszag 1991 ; Orszag, Israeli & 
Deville 1986; Temam 1991). However, since the present formulation extends the 
application of the scheme to compressible flow simulation we performed a convergence 
study. The mass and momentum residuals are used for the convergence indicator, 
which are defined as 

for the mass residual: 

v '  r 1 R ~ , ,  = -(*+- 2 a u . 2  ~ , , ~ + a n ( n +  1) 
2n+ 1 r 

for the r-momentum residual : 

k + n  
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0.05 
FIGURE 2. Comparison of mass residual variation with dimensionless time and number of iterations, 

N for (a) At = 0.01, (b)  At = 0.001, ( c )  At = 0.0001, 

for the &momentum residual : 

where subscripts n and j represent the nth component of the Legendre polynomial at 
the j th collocation point, C, is the term containing the viscosity derivatives, and 
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3.L 

FIGURE 3. Comparison of momentum residual variation with time and N for (a) At = 0.01, 
(b) At = 0.001, (c)  At = 0.0001. 

arm, PIrn, Arm, rrrn are constants representing the integrals of products of three associated 
Legendre functions. Rottenberg et al. (1959) presented a theory expressing these 
constants in terms of 3-J symbols, and devised algorithms to compute them 
numerically. Using their notation we write 

yl", = A;rn-m(m+l)~~rn.  (25) 

Figures 2 and 3 show the time history of log,, ( 1  Rn, I/ , and log,, lt{(RL;y)* + (R:Ty)'}>"Il 
for a typical simulation with Re, = 20, T: = 10000 K, and T: = 3000 K, where T: 
is the surface temperature of the particle. The present numerical scheme is subjected to 
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the Courant time limit because of its explicit treatment of the nonlinear terms in the 
Navier-Stokes equations. The typical Courant time limit is on the order of s for 
argon plasma with Re, = 20, T: = 10000 K. For a non-dimensional time increment 
At = 0.01 (which is equivalent to At* = 2 x lO-’s, figures 2a and 3a), at the first time 
step, it takes more than 30 iterations for the maximum mass residual to reach 
which is not quite satisfactory. Furthermore, the momentum residual does not decay 
monotonically at that time-step size. However it takes less than four iterations for the 
maximum mass residual to reach lo-’ at the first time step for At  = lop3 and lop4 
(figures 2 b and 2 c ,  respectively) and the momentum residual decays monotonically. 
Also, the mass and momentum residuals show exponential decay as the number of 
iterations increases for every time step. Thus it can be said that the present numerical 
scheme is convergent within the Courant time limit. 

5. Results for constant surface temperature 
In the ideal case of a sphere having high heat capacity and thermal conductivity, the 

sphere can be characterized by a constant surface temperature. Many previous works 
are based on the assumption of constant sphere surface temperature. 

The drag coefficient can be obtained from the computed pressure and velocity fields. 
The drag force exerted on the sphere surface can be decomposed into two components : 
the form drag and the viscous drag. These two components are calculated from the 
expressions 

(26 a> 

(26 b) 

FZr = (--p* cos 8) R2 sin 8 d8 dq5, 

(- 7:6 sin 8 + T:? cos 8) R2 sin 8 d8 dq5, 

$=O 6-0 

F& = s’ 
$=0 6-0 

where F& and F& represent the form and viscous components, and where 7,*B and 7Fr 

are tangential and normal stress components respectively. The spectral representations 
of (26a, b) become 

where G$ is a NT + 1 by N T +  1 Chebyshev derivative matrix of order 1. The drag 
coefficient C, is defined as 

(28) 
where FD = FDf + F,,. 

At this point, we study the convergence of the drag coefficients. Table 1 shows the 
results of our convergence study on the drag coefficient as the number of Legendre 
functions N ,  and the number of collocation points NT vary. We conclude that the drag 
coefficient is less sensitive to the number of Legendre functions than the number of 
collocation points. Throughout this study we use N ,  = 15 and NT = 45 for Re, < 20, 
since the converged drag coefficients yield values to the order of accuracy, which 
is within the uncertainties of plasma thermodynamic and transport properties. 

Based on a finite difference study, Lee, Hsu & Pfender (1981) suggested a simple 
factor to account for the effects of the changing argon thermal plasma properties on 
the drag coefficient calculation : 

FD 
cD = txp2 UzZR2’ 

(29) * * 0 4 5  
‘ D  = c D p @ : ~ ~ / & u w ) -  ’ 9 
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C D  

Re, NL = 10, N ,  = 30 N L  = 15, N ,  = 30 N ,  = 15, N ,  = 45 N ,  = 15, N ,  = 60 

1 14.335 14.329 14.314 14.310 
10 2.561 2.558 2.549 2.547 
20 1.987 1.983 1.971 1.970 

TABLE 1. Variation of CD with N ,  and N ,  (TZ = 12000 K and T: = 3000 K) 

Case 0.1 1 .O 10.0 20.0 

l(a) 167.03 18.68 2.89 1.84 
(b) 146.20 15.32 2.52 0.76 
(c)  178.37 19.34 2.74 1.68 
( d )  144.78 14.31 2.59 1.97 

2(a) 141.06 15.78 2.44 1.55 

1.86 (c) 209.65 22.49 
(d )  123.48 13.93 2.36 1.78 

N/A N/A N/A N/A 
3.19 1.92 (c) 220.00 23.53 

( d )  188.82 18.78 3.65 1.82 

4(a) 173.00 19.35 3.00 1.90 

3.75 2.21 (c) 272.55 28.80 
( d )  161.93 16.08 2.51 2.42 

5 122.10 13.72 2.212 1.365 

TABLE 2. Comparison of drag coefficients for various Reynolds numbers based on the sphere 
diameter. Case 1, TZ = 12000 K and T: = 3000 K;  Case 2, TZ = 10000 K and T: = 3000 K;  Case 
3, TZ = 12000 K and T;t = 1000 K;  Case 4, TZ = 10000 K and T: = 1000 K;  Case 5, the 
isothermal and incompressible solution (Dennis & Walker 1971). (a) Calculation based on Lee et al. 
(1981), equation (29); (b) Sayegh & Gauvin (1979); (c) Lewis & Gauvin (1973), equation (30); (d )  
present study. 

N/A N/A N/A N/A 

3(a) 204.84 22.91 3.56 2.25 

3.08 
(4 

(b) 

N/A N/A N/A N/A (b) 

where CDf is the isothermal drag coefficient. The multiplying factor (pz ,u3p:,u3-0.45, 
where subscript w denotes properties of the sphere, is always greater than one for hot 
argon plasma flow over a cold solid sphere. Thus from (29) the predicted drag 
coefficient under the argon thermal plasma environment is higher than that of the 
isothermal case. With an assumption of Stokesian motion of the plasma, Lewis & 
Gauvin (1 973) obtained a different form of correction factor through a finite volume 
approach, which can be written as 

(30) 

where v* is the kinematic viscosity and subscript av represents the properties evaluated 
at the arithmetic mean temperature between the free stream and the sphere surface. 

Table 2 compares the drag coefficients calculated using (29), (30), to those of Sayegh 
& Gauvin (1979) and the present study. We use Sayegh & Gauvin’s data because of 
their popularity among thermal plasma chemists. Isothermal drag coefficients are also 
compared. For Cases 1, the present results compare favourably with the numerical 

4t 0.15 
cD = cD,,(v~v/vm) 3 
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simulation results by Sayegh & Gauvin (1979) at low Reynolds numbers (Re, < 10). 
At Re, = 20 the drag coefficient predicted in Cases (b) is underestimated by more than 
100%. The high Reynolds number solution (Re, > 50) of Sayegh & Gauvin shows a 
negative drag coefficient, which is not physically realistic. Thus, we believe that for 
convection-dominated flow, their results are not reliable. The magnitudes of drag 
coefficients predicted from various suggested correlations deviate from each other by 
more than 60 %. Among the suggested correlations within the plasma conditions 
studied in this paper, the correlation suggested by Lee et al. (1981) seems to agree best 
with the present result (within 23 YO at most). The difference is believed to be due to two 
factors. First, it is necessary to use dense grids near the solid boundary to resolve the 
steep temperature gradient. The grid interval near the surface used in this study is 
0.09 pm which is much less than 1.5 pm they used. Important physical lengthscales 
(such as Debye length or mean free path length) in argon plasma are on the order of 
microns which we resolve with our grid. Secondly, the upwind scheme they used is 
highly diffusive especially for the simulation of the flow over sphere because the flow 
approaches the grid lines at large angles. In general, under the thermal plasma 
environment, the drag force exerted on the sphere is larger than that of isothermal gas 
flow (compare with Case 5 )  due to a thin relatively cold boundary layer near the sphere 
surface. This effect will be discussed further in the following section. 

In a thermal plasma, the Nusselt number is defined as 

2Rq* 
NU = s: - s: ' 

where q is the heat flux to the surface and S is the heat conductivity potential defined 
as 

S*(T*) = JI,: K* dT*. 

For pure heat conduction, (31) ensures a limiting Nusselt number of 2 while other 
Nusselt number definitions fail (see Chen 1988). Based on this Nusselt number 
definition, Vardelle, Vardelle & Fauchais (1 982) suggested through extensive numerical 
study an empirical correlation relating the Nusselt number with the Reynolds number 
evaluated with average plasma properties between the free stream and the surface 
temperatures as 

Chen (1986) suggested another form of Nusselt number expression by using the same 
numerical approach as Lee et al. (1982), which can be written as 

Nu = 2+0.514Reia,. (32) 

1 +0.63Re, Pr:' (33) 

where c = [I - (h:/h*,y41/[1- (h:/h:)21 

and h* is the enthalpy. 
Table 3 shows the steady-state Nusselt number for different plasma free-stream 

temperatures under atmospheric pressure. The results are compared with the suggested 
correlations available in the literature. The effect of Prandtl number on the Nusselt 
number is omitted in (33) by the assumption of Pr = 1, thus the predicted Nusselt 
number deviation using (33) at low Reynolds number is expected to be small. This is 
due to the Prandtl number usually encountered in argon atmospheric thermal plasmas 
being on the order of 0.67 at temperatures higher than 10000 K. The Nusselt numbers 



Argon thermal plasma pow oaer a solid sphere 555 

Re; 

Case 0.1 1 .o 10.0 20.0 

1(a> 2.131 2.410 3.297 3.835 
2.032 2.282 4.01 1 5.308 
2.041 2.298 4.646 5.573 

2 (a> 2.124 2.372 3.178 3.666 
2.032 2.229 4.109 5.457 
2.045 2.259 3.523 4.770 

3 (a) 2.1 13 2.362 3.145 3.619 
2.034 2.244 3.793 4.978 
2.106 2.264 3.442 5.319 

4 (0) 2.105 2.318 3.123 3.426 
(b) 2.033 2.276 3.698 5.261 
(4 2.054 2.363 3.572 4.521 

5 2.037 2.260 3.358 4.065 

TABLE 3. Comparison of Nusselt numbers for various Reynolds numbers based on the sphere 
diameter. Case 1, TZ = 12000 K and T: = 3000 K ;  Case 2, TZ = 10000 K and T: = 3000 K ;  
Case 3, TZ = 12000 K and T: = 1000 K ;  Case 4, TZ = 10000 K and T,* = 1000 K;  Case 5, 
constant-fluid-property calculation with Pr ,  = 0.73 (Dennis et al. 1973). (a) Calculation based on 
Vardelle et al. (1982), equation (32); (b) calculation based on Chen (1988), equation (33); (c)  present 
study. 

(b) 
(4 

(b)  
(4 

(b) 
(4 

Case 0. I 1 .o 10.0 20.0 

1 0.132 0.234 2.001 2.983 
2 0.1 14 0.192 1.732 2.541 
3 0.141 0.262 2.585 3.248 
4 0.108 0.153 1.847 2.032 

TABLE 4. Time taken to reach steady state (ps) for various Reynolds numbers based on the space 
diameter. Cases 1-4 are defined in tables 2 and 3 

at low Reynolds number (Re < 1) given by Vardelle et al. (1982) are higher than both 
those of Chen (1988) and the present study since the Prandtl number is implicitly 
assumed to be unity in their correlation, implying higher heat conductivity than the 
actual plasma case. In general, the present results agree with the correlation of Chen 
(1988) to within 15 YO maximum deviation. The calculated Nusselt numbers under 
thermal plasma conditions are higher than that of the constant-property calculations 
(see Case 5 )  due to the steep temperature gradient developed near the sphere surface. 

Table 4 shows the elapsed time to reach steady state for the simulated cases. The 
estimation of the thermal relaxation time required to reach the steady state for fluid 
properties changing with temperature, as suggested by Konopliv & Sparrow (1972), is 
written as 

Using this expression, the times required to reach state state for the simulated case with 
free-stream temperatures 12000 and 10000 K become 0.0865 and 0.03623 ps 
respectively. In deriving (34), Stokesian flow with quasi-steady state is assumed. 
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Present results show that for the low Reynolds number case (Re,  = 0.1) the time 
required to reach steady state is about 2 to 3 times greater than that predicted by (34). 
This is believed to be because the momentum boundary layer develops more slowly 
than the thermal boundary layer for the argon thermal plasma. As Reynolds number 
increases, the time necessary for the flow to reach steady state increases owing to the 
augmented convection effect. It is interesting to note that for the low surface 
temperature case, it takes longer for the flow to reach the steady state since steeper 
temperature and fluid property gradients near the sphere surface hinder the flow in 
adjusting to the environment. 

Based on the present study, the time required for the particle to reach steady state 
is much shorter than the order of 1 ms usually encountered in thermal plasma sprays. 
Thus it is believed that steady-state correlations can be used for the calculation of 
transient particle trajectories and heating histories inside the plasma. 

6. Results including internal heat conduction 

effects on the energy and momentum transfer rate. 
In this section we consider internal heat conduction inside the particle and its overall 

The governing equation for the sphere internal heat conduction can be written in 

where variables with a tilde represent the interior of the sphere. The inner region of the 
solid sphere is also transformed into the new variable C E  [ - 1,1] which can be expressed 
as 

5 = 2 r - l ,  r < l .  (36) 
The internal dimensionless temperature is expanded as series of Legendre polynomials : 

n=o 

The heat flux and temperature continuity boundary conditions can be expressed as 

where K and R are thermal conductivities of the fluid and the sphere respectively. 4, is 
the dimensionless radiative heat flux at the particle surface which can be written as 

where (T is the Stefan-Boltzmann constant and e is the surface emissivity. 

equation where a backward Euler difference is used, 
The internal temperature equation is solved simultaneously with the plasma energy 

The influence matrix technique (Paik et al. 1992) is used to decompose the 
temperature into a linear combination of a set of auxiliary functions: 
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Melting Specific Thermal 
Density point heat conductivity 

Material (kg m-7 (K) (J kg-' K-') (W m-l K-l) 
A1 2707 - 896 204 

A1203 4000 2326 1242 6.3 
c u  8930 1356 425 398 

1 % C-Steel 7801 - 473 33 

TABLE 5 .  Materials studied and their corresponding physical and thermodynamic properties 

Experiment 
T: (K) Re', (Chen et al. 1991) Present study 

9994 20.43 1.76 1.79 
10228 22.46 1.61 1.67 
10472 25.13 1.60 1.56 
10792 28.15 1.42 1.45 
10830 30.69 1.36 1.40 

TABLE 6 .  Comparison of calculated drag coefficients with experimental data for various Reynolds 
numbers based on particle diameter 

where Pl and P, are the unknown coefficients which can be determined from the 
interfacial boundary conditions : temperature and heat flux continuity. In the 
transformed coordinates, (38) yields a linear system, written in matrix notation as 

in which the prime indicates the derivative with respect to the corresponding variable. 
Owing to the difficulty of experimentally determining the drag coefficient and 

Nusselt number for particle-plasma flow, very little experimental data is available for 
the drag coefficient. Recently, Asamaliev et al. (1991) reported a drag force acting on 
an aluminium (Al) particle with diameter 300 pm in an argon plasma flow with 
TZ = 10000 K and UZ = 100 m/s. Based on their experimental conditions, 
Re, = 2.45 is used to simulate the experiment. The properties for an A1 particle are 
listed in table 5 .  The calculated drag force is 0.004 17 N which is less than the reported 
value of 0.0044 N. However, considering the experimental uncertainties, the calculated 
drag force agrees reasonably well with the experimental data. Chen, Qui & Yang (1991) 
measured the drag coefficients of argon plasma on a 2.2 mm steel sphere. In order to 
obtain the drag force without the undesired effect of the supporting wire, they used a 
symmetrically welded L-shaped supporting wire. The type of steel they used in their 
experiments is not specified, thus we choose to use 1 %  c-steel properties for our 
simulation. Table 6 compares the calculated drag coefficients with the experimental 
data. The calculated drag coefficients include the sphere internal heat conduction since 
it is believed that this case is close to the experimental conditions. NT = 60 and 
N L  = 20 are used for the calculations and the values are obtained after 70 dimensionless 
time units are elapsed. The calculated drag coefficients agree with their experimental 
data reasonably well considered experimental uncertainties. 

A calculation has been performed with A1,0, and Cu particles whose properties are 
listed in table 5 .  Figure 4 shows temperature contours over an A1,0, spherical particle 
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FIGURE 4. Isotherms around an A1,0, particle after r = 120 units at T: = 1000 K. (a) TZ = 12000 K, 
t* = 0.0071 p; (b) TZ = 10000 K, t* = 0.0082 ps; (c)  TZ = 4000 K, r* = 0.0383 ps. 

with radius 20 pm after 120 units of the dimensionless time. Different plasma free- 
stream temperatures with an initial particle temperature of 1000 K are used. For a 
plasma free-stream temperature of 12000 K, conduction is still the dominant heat 
transfer mechanism. Convection takes longer to establish than for lower free-stream 
temperatures due to the high thermal conductivity of the plasma at high temperature. 
Accordingly, convection effects are predominant for the same dimensionless timescale 
plots at lower free-stream temperatures (figure 4 b, c). A larger temperature gradient 



Argon thermal plasma flow over a solid sphere 

2 

1 

0 
0 2.5 5.0 

" 
0 2.5 5.0 

559 
Level T 

F 11317 
E 10630 
D 9943 
C 9257 
B 8570 
A 7883 
9 7196 
8 6510 
7 5823 
6 5136 
5 4450 
4 3673 
3 3076 
2 2389 
1 1703 

Level T 
F 9445 
E 8883 
D 8321 
c 7759 
B 7197 
A 6635 
9 6073 
8 5511 
7 4949 
6 4387 
5 3825 
4 3262 
3 2700 
2 2138 
1 1576 

Level T 
F 3838 
E 3649 
D 3461 

F- C 3272 
B 3084 
A 2895 

2 9 2706 
8 2518 
7 2329 
6 2141 
5 1952 
4 1763 
3 1575 
2 1386 
1 1198 

1 

n " 
0 2.5 5.0 

FIGURE 5. Isotherms around a Cu particle after t = 120 units at T,* = 1000 K. (a)  T z  = 12000 K, 
t* = 0.0071 p ~ ;  (b) T: = 10000 K, t* = 0.0082 FS; (c) (2": = 4000 K, t* = 0.0383 PS. 

near the sphere surface is found for the high free-stream temperature case, which 
results in a higher heat transfer rate to the sphere surface. A copper particle with radius 
20 pm immersed in argon plasma is simulated and the isotherms are shown in figure 
5.  For plasma free-stream temperatures of 12000 and 10000 K, the particle surface 
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FIGURE 6. Transient Nusselt numbers for an A1,0, particle for different plasma free-stream 
temperatures with (a) T: = 1000 K, (b)  = 2000 K, (c) = 3000 K. 

experiences temperatures above the melting point. The actual elapsed times for the 
copper particle surface to reach the melting temperature are 143 and 214 dimensionless 
time units for the 12000 and 10000 K free-stream temperatures respectively. Because 
of the higher thermal conductivity and lower heat capacity of copper compared to the 
alumina particle, the surface temperature of the copper is higher than that of the 
alumina particle under the same conditions. 

Figure 6 shows the calculated transient Nusselt number for the Al,O, particle under 
different plasma free-stream and particle initial temperatures. Re, = 20 is used with 
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FIGURE 7. Transient total drag coefficient for an A1,0, particle for different plasma free-stream 
temperatures with (a) T: = 1000 K, (b) = 2000 K, (c)  = 3000 K. 

particle radius 20 pm in the simulation. For a fixed initial particle temperature, the 
Nusselt number decreases as the free-stream temperature increases. This trend is due 
to the definition of Nusselt number used in this study. In the case for changing surface 
temperature, the Nusselt number is defined as 

2Rq* NU = 
S;-S,*'  (43) 

where S, is the thermal conductivity potential based on the initial sphere temperature. 
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Thus for the high free-stream temperature, the denominator of (43) is larger than for 
that of low free-stream temperature while the increase of thermal conductivity due to 
the increase of particle surface temperature is not large. 

For isothermal flow past a solid sphere, the drag coefficient is a function of Reynolds 
number only. But under a thermal plasma environment, the drag coefficient is a 
function of the plasma free-stream temperature as well as the initial particle 
temperature. Figure 7 compares the total drag coefficients calculated including the 
internal heat conduction under the same conditions used for figure 6. For constant 
surface temperature, the total drag coefficient increases as the plasma free-stream 
temperature increases. As the particle surface temperature increases, it is expected that 
the plasma density and viscosity changes would result in changes in the total drag 
coefficient. However, during the simulated time spans, particle surface temperature 
changes on the order of 10 K do not affect the plasma thermodynamic and transport 
properties significantly. Figure 7 shows the same trends as the case with a constant 
surface temperature. The resulting increase in drag with high free-stream temperatures, 
for the constant wall temperature case, is expected because at higher free-stream 
temperatures the radial temperature profile in the vicinity of the sphere becomes 
steeper, reducing the thickness of the layer of low-viscosity fluid near the surface. The 
magnitude of the drag coefficient increases as the surface temperature decreases at 
constant free-stream temperatures. This finding is in contrast to that of Seymour (1971) 
who states ‘the drag ratio at constant free-stream temperature was found to increase 
with sphere wall temperature as one would expect due to the viscosity in the fluid near 
the wall ’. However, in Seymour’s drag calculation, the contribution of the inertia force 
to the total drag had been neglected and only the viscous force had been considered. 
Thus the experimentally measured drag in his study was found to be 10-30 % higher 
than the calculated drag. The fluid density changes more drastically than the viscosity 
with temperature under the temperature ranges considered in this study. Thus, as the 
surface temperature is lowered, the density of the fluid increases, resulting in higher 
inertia forces. 

Using one-dimensional heat conduction model, Bourdin et al. (1983) concluded that 
the temperature difference between the surface and the centre of the particle can be less 
than 5 YO of the maximum temperature differences when the Biot number is less than 
0.02. Their findings agree with ours, where the Biot numbers are usually less than 0.01 
so that the temperature distribution inside the sphere is quite uniform due to high heat 
capacity and thermal conductivity. Thus, the commonly used constant particle 
temperature assumption is valid under the argon thermal plasma conditions studied 
here. 

7. Conclusions 
The time-splitting method suggested by Orszag & Kells (1980) is extended to solve 

the unsteady compressible plasma flow and heat transfer problem. The present method 
converges reasonably well with properly chosen time steps. The drag coefficients 
calculated here agree closely with available experimental measurements. 

Present results indicate that the thermal relaxation time required for a particle 
immersed in argon plasma flow to reach steady state is 2 to 3 times higher than that 
predicted by Konopliv & Sparrow (1972) using a quasi-steady assumption because the 
momentum boundary layer develops more slowly than the thermal boundary layer. 
The particle relaxation time inside the argon thermal plasma is found to be very short 
so that the use of a steady-state correlation for the calculation of transient particle 
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trajectories and heating histories is acceptable. It is also interesting to note that for the 
low surface temperature case, it takes a longer time for the flow to reach the steady 
state since steeper temperature and fluid property gradients near the sphere surface 
hinder the flow in adjusting to the environment. 

It is also found that when internal heat conduction is included, which is close to real 
particle-plasma flow, the Nusselt number increases as the free-stream temperature 
decreases due to the slow change of thermal conductivity near the particle surface. 
However, the drag force increases as the plasma free-stream temperature increases. 

The calculated steady-state drag coefficients and Nusselt numbers are higher than 
those of the constant-property calculations due to the large temperature gradients near 
the sphere surface which induce rapid changes in the transport properties. This trend 
agrees qualitatively with previous studies (Lewis & Gauvin 1973; Chen & Pfender 
1983; Lee et al. 1981). 

Finally, the problems of particle interaction with an applied electromagnetic field, 
particle ablation, particle thermophoresis and droplet motion under the thermal 
plasma condition need to be rigorously studied in the future in order to understand real 
gas effects of the plasma-particle interactions. 
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